A characterization of planar partial cubes

Iztok Peterin *

Institute of mathematics and physics
FEECS, University of Maribor
Smetanova ulica 17, 2000 Maribor, Slovenia
e-mail: iztok.peterin@uni-mb.si

March 18, 2008

Abstract

Partial cubes have been extensively investigated as well as planar graphs. In this note we introduce an additional topological kind of condition to the Chepoi’s expansion procedure that characterizes planar partial cubes. As a consequence we obtain a characterization of some other planar subclasses of partial cubes.

Key words: Partial cubes; Planar graphs; Expansion
AMS subject class. (2000): 05C10, 05C75

1 Introduction and preliminaries

Partial cubes are isometric subgraphs of hypercubes and have been largely investigated, see the book [8] and the references therein. The most important subclass of partial cubes are median graphs. Both classes are precisely determined with some expansion procedure. That is, any partial cube can be obtained from K_1 by a certain sequence of graph enlargements as shown by Chepoi [4]. The same holds for median graphs (only the rule is different) as proved by Mulder [10, 11].

In [12] a topological kind of condition was introduced that ensures—together with Mulder’s expansion theorem—planarity of median graphs. A natural question arose whether a similar condition exists for planar partial cubes. Here we introduce such a condition, that is even more natural as the one in [12]. Surprisingly it gives a characterization—together with Chepoi’s expansion theorem—of planar partial cubes.

*Supported in part by the Ministry of Science of Slovenia under the grant P1-0297.
The same condition also holds for graph classes that lie between median graphs and partial cubes and can be obtained from \(K_1\) by (some) expansion. For additional information on these classes of graphs we recommend [3].

In the remainder of this section we fix the notation. In the next section the main result follows and the discussion of planarity for other graph classes that can be obtained by some expansion procedure.

The distance \(d_G(u, v)\) between two vertices \(u\) and \(v\) in a graph \(G\) is defined as the number of edges on a shortest \(u, v\)-path. A subgraph \(H\) of \(G\) is called isometric, if \(d_H(u, v) = d_G(u, v)\) for all \(u, v \in V(H)\) and \(H\) is convex if for every \(u, v \in V(H)\) all shortest \(u, v\)-paths belong to \(H\). Convex subgraphs are clearly isometric.

The Cartesian product \(G^2H\) of two graphs \(G\) and \(H\) is the graph with vertex set \(V(G) \times V(H)\) where the vertex \((a, x)\) is adjacent to \((b, y)\) whenever \(ab \in E(G)\) and \(x = y\), or \(a = b\) and \(xy \in E(H)\). Hypercubes or \(n\)-cubes \(Q_n\) are Cartesian products of \(n\) copies of \(K_2\). Isometric subgraphs of hypercubes are called partial cubes. Trees and even cycles are partial cubes.

Let \(G^1\) and \(G^2\) be two isometric subgraphs of a graph \(G\) that form a cover of \(G\) with nonempty intersection \(G^1 \cap G^2 = G'\). Note that there is no edge from \(G^1 \setminus G'\) to \(G^2 \setminus G'\). Graph \(H\) is an expansion of \(G\) with respect to \(G^1\) and \(G^2\) as follows. Take disjoint copies of \(G^1\) and \(G^2\) and connect every vertex from \(G^1 \cap G^2 = G'\) in \(G^1\) with the same vertex of \(G^1 \cap G^2 = G'\) in \(G^2\) with an edge. Such pairs of vertices will be called expansion neighbors. We say that expansion is isometric (connected) if \(G'\) is isometric (connected). It is not hard to see that copies of \(G'\) in \(G^1\) and in \(G^2\) and new edges between those two copies form the Cartesian product \(G' \square K_2\).

In [4] Chepoi has shown that \(G\) is a partial cube if and only if it can be obtained from \(K_1\) by a sequence of expansions.

One of the most useful relations for the investigation of metric properties of graphs in general and partial cubes in particular is the Djoković-Winkler relation \(\Theta\), (cf. [5, 13]). Two edges \(e = xy\) and \(f = uv\) of \(G\) are in the relation \(\Theta\) if

\[
d_G(x, u) + d_G(y, v) \neq d_G(x, v) + d_G(y, u).
\]

Clearly, \(\Theta\) is reflexive and symmetric, but not transitive in general. Winkler proved in [13] that transitivity of \(\Theta\) is characteristic for partial cubes among bipartite graphs.

Graph \(G\) is planar if it can be drawn in the plane such that any two edges cross only in an endvertex (if they are incident with the same endvertex). Such drawings are called plane drawings of \(G\). Any plane drawing of \(G\) divides the plane into regions which are called faces. One of those faces is unbounded and is called the exterior or the outer face, the others are interior or inner faces. Vertices that lie on an outer face are called outer vertices and other are inner vertices. Note that the boundary of every face
of some plane drawing can be boundary of an outer face of some other plane drawing
of the same graph.

A graph \(G \) is \textit{outerplanar} if it is planar and embeddable into the plane so that all
vertices lie on the outer face of the embedding. In [1] Behzad and Mahmoodian have
shown that \(G \) is outerplanar if and only if \(G \boxtimes K_2 \) is planar. For more information on
planar graphs (or more general graphs on surfaces) we recommend [9].

\section{Two-face expansions}

Vertex \(u \) of a graph \(G \) is a \textit{cut vertex} if \(G - u \) has more components as \(G \), while edge
\(e \) is a \textit{bridge} if \(G - e \) has more components as \(G \). (We remove only the edge \(e \) without
endvertices.)

Let \(G \) be a planar graph. We construct the graph \(G - u \) as follows. First delete all
bridges from \(G \). Let \(u \) be a cut vertex in the obtained graph. We delete \(u \), add copies
of \(u \) back to all components incident with \(u \) in the natural way and denote this graph
with \(G - u \). With \(G - u \) we denote the graph that remains from \(G \) after this procedure
is executed for all cut vertices of \(G \). For a tree \(T \) on \(n \) vertices we get the totally
disconnected graph on \(n \) vertices for \(T - u \) and if \(G \) is obtained by amalgamating a vertex
from cycle \(C_n \) with a vertex of cycle \(C_m \), then \(G - u \) consists of disjoint cycles \(C_n \) and
\(C_m \).

Let \(H \) be an expansion of a planar graph \(G \) with respect to \(G^1 \) and \(G^2 \). Then \(H \) is
a \textit{2-face expansion} of \(G \) if all vertices of \(G' = G^1 \cap G^2 \) are on one face of some plane
drawing of \(G^1 \) and on one face of some plane drawing of \(G^2 \). First we need two technical
lemmas.

\textbf{Lemma 1} \textit{Let \(G \) be a planar 2-connected graph with a subdivision \(S \) of \(K_{2,3} \) and fix
planar drawing \(D \). Suppose that there exist vertices \(u_1, u_2, \) and \(u_3 \) of \(S \) that lie pairwise
on the same face of \(D \) but not all three on the same face. Then there exists a subdivision
\(S' \) of \(K_{2,3} \) where \(\{u_1, u_2, u_3\} \) is one part of a partition of \(S' \).

\textbf{Proof.} Let \(\{v_1, v_2\} \) and \(\{w_1, w_2, w_3\} \) be the sets that form a partition of \(S \). Let \(P_1, P_2, \) and \(P_3 \) be the \(v_1, v_2 \)-paths from \(S \). If \(\{w_1, w_2, w_3\} = \{u_1, u_2, u_3\} \), there is nothing
to prove. Thus suppose first that \(\{u_1, u_2, u_3\} \in S \) and that they do not form one set of
a partition of \(S \).

If all \(u_i \)'s lie on one \(v_1, v_2 \)-path, say \(P_1 \), they have two common faces in \(S \). Suppose
that \(u_1 \) is closest to \(v_1 \) on \(P_1 \), \(u_3 \) is closest to \(v_2 \) on \(P_1 \), and \(v_2 \) in between. To ensure
that \(\{u_1, u_2, u_3\} \) do not all lie on the same face there must be at least one additional
path in \(G \).}
If there exists a \(x_1, x_2 \)-path where \(x_1 \) is on \(u_1, u_2 \)-subpath of \(P_1 \) and \(x_2 \) is not on \(u_2, u_3 \)-subpath of \(P_1 \). Then there must also exists a \(u_1, x_3 \)-path where \(x_3 \) is on \(u_2, u_3 \)-subpath of \(P_1 \), otherwise we have a contradiction with the assumptions. But then \(\{u_1, u_2, u_3\} \) and \(\{x_1, x_3\} \) form a partition of a subdivision \(S' \) of \(K_{2,3} \). (The case when \(x_1 \) is on \(u_2, u_3 \)-subpath of \(P_1 \) and \(x_2 \) is not on \(u_1, u_2 \)-subpath of \(P_1 \) is symmetric.)

If there exists a \(x_1, x_2 \)-path where \(x_1 \) is on \(u_1, u_2 \)-subpath of \(P_1 \) and \(x_2 \) is on \(u_2, u_3 \)-subpath of \(P_1 \). Then there must also exists a \(u_2, x_3 \)-path where \(x_3 \) is on \(u_1, u_2 \)-subpath of \(P_1 \) or on \(u_3, u_2 \)-subpath of \(P_1 \), otherwise we have a contradiction with the assumptions. Note that \(x_1 \) can be \(u_1 \) and \(x_2 \) can be \(u_3 \), but not both at the same time. Suppose that \(x_3 \neq u_3 \). Again \(\{u_1, u_2, u_3\} \) and \(\{x_1, x_3\} \) form a partition of a subdivision \(S' \) of \(K_{2,3} \).

Let now be two vertices, say \(u_1 \) and \(u_2 \), on \(P_1 \) and \(u_3 \) on \(P_2 \). Here \(u_3 \notin \{v_1, v_2\} \) otherwise we have one of the above cases. Now there must exists a \(x_1, u_3 \)-path where \(x_1 \) is on \(u_1, u_2 \)-subpath of \(P_1 \) to avoid a contradiction with the assumptions. Clearly \(\{u_1, u_2, u_3\} \) and \(\{x_1, v_1\} \) form a partition of a subdivision \(S' \) of \(K_{2,3} \). \(\square \)

Lemma 2 Let \(G \) be a planar 2-connected graph with a subdivision \(S \) of \(K_4 \) and fix planar drawing \(\mathcal{D} \). Suppose that there exist vertices \(u_1, u_2, u_3 \), and \(u_4 \) of \(S \) that every triple lie on the same face of \(\mathcal{D} \) but not all four on the same face. Then there exists a subdivision \(S' \) generated by vertices \(U = \{u_1, u_2, u_3, u_4\} \) of \(K_4 \).

Proof. Let \(\{w_1, w_2, w_3, w_4\} \) generate a subdivision \(S \). If \(\{w_1, w_2, w_3, w_4\} = U \), there is nothing to prove. Otherwise there exists one \(u_i \), say \(u_1 \), that is different then all \(w_i \). Thus \(u_1 \) lies in exactly two faces \(F_1 \) and \(F_2 \) of \(S \). Suppose that not all vertices of \(U \) are on the same face of \(S \). Then we may assume that \(u_2 \) is on \(F_1 \) but not on \(F_2 \) and \(u_3 \) is on \(F_2 \) but not on \(F_1 \). Clearly \(\{u_1, u_2, u_3\} \) do not lie on the same face in \(S \) and thus in \(\mathcal{D} \), contrary to the assumption. Hence all vertices from \(U \) lie on the same face of \(S \), say \(F_1 \). Choose the notation so that \(w_1, w_2 \), and \(w_3 \) all lie on \(F_1 \) and that \(u_1, u_2, u_3 \), and \(u_4 \) lie on \(F \) in such an order.

Suppose now that not all vertices from \(U \) lie on one \(w_i, w_j \)-path. Then clearly must exists either \(u_1, u_3 \)- or \(u_2, u_4 \)-path in \(C \) to satisfy the assumption that not all lie on one face. (Note that all other paths that separate vertices of \(U \) on \(F_1 \) make even more damage.) But with this we already have a contradiction since either \(\{u_1, u_2, u_4\} \) or \(\{u_2, u_3, u_4\} \) in the first case and \(\{u_1, u_2, u_3\} \) or \(\{u_1, u_3, u_4\} \) in the second case are not on the same face anymore.

Thus all vertices from \(U \) must be on the one \(w_i, w_j \)-path in \(S \), say \(w_1, w_2 \)-path. Suppose that they lie in the natural way. There is only one way to satisfy the assumptions: there must be a \(u_1, u_3 \)-path and \(u_2, u_4 \)-path in \(C \). But then \(U \) generate a subdivision of \(K_4 \) with this two paths, \(w_1, w_2 \)-path, \(w_1, w_3 \)-path, and \(w_3, w_2 \)-path. \(\square \)
Theorem 3 A graph G is a planar partial cube if and only if G can be obtained from K_1 by a sequence of 2-face expansions.

Proof. Suppose that G can be obtained from K_1 by a sequence of 2-face expansions. Then G is a partial cube by Chepoi’s expansion theorem. We will show that 2-face expansions preserve planarity by induction on the number of expansions. Let $H_0 = K_1$ and denote with H_k the graph obtained after k expansions with corresponding subgraphs H^1_k and H^2_k for the next expansion. By the induction hypothesis H_k is planar and consequently H^1_k and H^2_k are planar. Let us draw H^1_k and H^2_k in such a way, that the face of H^1_k and the face of H^2_k that correspond to the 2-face expansion are outerfaces and that these two drawings have empty intersection. Then H'_k is on outer face of both H^1_k and H^2_k and $H'_k \cap K_2$ is planar by the result of Behzad and Mahmoodian. Now just connect by an edge every vertex of H'_k in the drawing of H^1_k with the same vertex of H'_k in the drawing of H^2_k. Clearly this can be done so that a new drawing of H_{k+1} is planar. Hence G is planar.

Suppose now that G is a planar partial cube. Then G can be obtained by a sequence of expansions from K_1 by Chepoi’s theorem. Assume that one of this expansions, say H_k to H_{k+1} with respect to H^1_k and H^2_k, is not a 2-face expansion for every drawing of graphs H^1_k and H^2_k. We can assume that the vertices of $H'_k = H^1_k \cap H^2_k$ are not on one face in any drawing of H^1_k. Choose index k to be the smallest of all such expansions and fix one drawing D. We will denote with u' the expansion neighbor of $u \in H'_k$ in the remainder.

We distinguish three cases. The first one occurs when there exists a pair of vertices from H'_k that are not on the same face of H^1_k. For the other two cases all pairs of vertices from H'_k are mutually on the same face of H^1_k, but not all on one face. Note that then all vertices must be in the same component C of $(H^1_k)^-$ and that there is a subdivision of $K_{2,3}$ or K_4 in C, since C is not an outerplanar graph.

Case 1 There exists a pair of vertices $u,v \in H'_k$ that are not on the same face of H^1_k of D.

Let u and v be any pair of vertices from H'_k that are not on the same face of this plane drawing of H^1_k. Note that there exists a u', v'-path P in H^2_k and the drawing D of H_{k+1} is not planar on this drawing. Since this holds for any drawing D of H_{k+1}, also G is not planar contrary to the assumption.

Case 2 There exists a component C of $(H^1_k)^-$ that contains some vertices from H'_k that are contained in a subdivision S of $K_{2,3}$.

There must be at least three vertices $u_1, u_2, u_3 \in H'_k$ in C. By Lemma 1 $\{u_1, u_2, u_3\}$ form one set of a partition of a subdivision S' of $K_{2,3}$ and let $\{v_1, v_2\}$ be the other set. Furthermore let v_3 be such a vertex form H^2_k that there exists vertex disjoint (with
exception of v_3) v_3, u'_1-path P_1, v_3, u'_2-path P_2, and v_3, u'_3-path P_3 in H'_k. (Note that v_3 can be one of u'_1, u'_2, or u'_3.) Such a vertex exists, since H'_k is an isometric subgraph of H_k. We claim that $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$ form a partition of the subdivision of $K_{3,3}$, which is impossible for planar graphs. Obviously S' together with v_3 and paths $P_1, P_2,$ and P_3 form a subdivision of $K_{3,3}$.

Case 3 There exists a component C of $(H'_k)^-$ that contains vertices some vertices from H'_k that are contained in a subdivision of K_4.

Let $W = \{w_1, w_2, w_3, w_4\}$ be vertices that generate the subdivision S of K_4. First we will show that if there are only three vertices $u_1, u_2, u_3 \in H'_k$ on S, we have Case 2 when u_1, u_2, u_3 are pairwise on the same face but not all three on one face of D. Indeed, if this holds already on S there exists u_i, say v_1, that is not in W. Also there exist $w_i, w_j \notin \{u_1, u_2, u_3\}, i \neq j, i, j \in \{1, 2, 3, 4\}$, such that only one of u_1, u_2, u_3 can be at w_i, w_j-path. Without loss of generality we may assume that u_1 is on w_1, w_2-path and u_2 and u_3 are not. But then $\{u_1, u_2, u_3\}$ and $\{w_1, w_2\}$ form a partition of a subdivision of $K_{2,3}$ and we have Case 2.

So let $U = \{u_1, u_2, u_3\}$ be on one face F of S. We may assume that F contains w_1, w_2, and w_3. Let all vertices from U lie on the same say w_1, w_2-path in the natural order. Then there must exists a x_1, u_3-path and u_2, y_1-path in C, where x_1 is between u_1 and u_2 and y_1 lies between u_3 and w_2, or there exists a u_1, x_2-path and y_2, u_3-path in C, where x_2 is between u_2 and u_3 and y_2 lies between u_1 and u_2, or there exists a x_3, u_2-path and u_1, y_3-path in C, where x_3 is between w_1 and u_1 and y_3 lies between u_2 and u_3. In each case $\{u_1, u_2, u_3\}$ and $\{x_i, y_i\}$ form a partition of a subdivision of $K_{2,3}$ and again we end up with Case 2.

If not all three vertices are on one w_i, w_j-path, there exists one vertex from U, that is the only vertex from U on a path between w_i and w_j. Note that if we wish to fulfill the assumptions there must be a path in C from such a vertex to a vertex such that lies between the other two vertices of U. Choose the notation so that u_1 is the only vertex from U on a w_1, w_2-path. But the again $\{u_1, u_2, u_3\}$ and $\{w_1, x\}$ form a partition of a subdivision of $K_{2,3}$, that is Case 2.

Thus we must have at least four vertices $u_1, u_2, u_3, u_4 \in H'_k$ on S. Even more, every triple of them must lie on the same face (but not all four on one face), otherwise we have Case 2 by the above. By Lemma 2 there exists a subdivision S' of vertices $\{u_1, u_2, u_3, u_4\}$. S' is also a subdivision of wheel W_3, since K_4 is isomorphic to W_3. Choose the notation so that u_1 is the center of S of wheel W_3. Let S' contain such u_i, u_j-paths $P_{ij}, i \neq j$ and $i, j \in \{1, 2, 3, 4\}$, that their length is small as possible. We will show that S' is isometric subgraph of C and with this a partial cube. Indeed, if there exist a shorter path between two different u_i, u_j-paths every triple from $\{u_1, u_2, u_3, u_4\}$
is not on the same face anymore and we have Case 1 or Case 2. By Theorem 1 of [6] either u_2, u_3, u_4 are neighbors of u_1 or all are at the distance 2 to u_1 (S is isomorphic to a graph obtained from K_4 by subdividing each edge exactly once). Suppose that v is a common neighbor of u_1 and u_2 that is not in H_k'. Then there exists also a common neighbor $z \in H_k^2$ of u_1 and u_2 that is not in H_k'. Now edges u_1v and u_1z are both in relation Θ with u_3w where w is a common neighbor of u_2 and u_3, which is impossible for partial cubes.

Thus u_1 is a vertex in H_k' with three neighbors $u_2, u_3, u_4 \in H_k'$ in the same component C of $(H_k')^-$. Denote with F_{ij} the face that contains u_i and u_j, $i \neq j$, $i, j \in \{2, 3, 4\}$. We claim that $\{u_1, u_2, u_3, u_4, u_1'\}$ form a subdivision of K_5 in H_{k+1}—a contradiction with the planarity of G.

Vertex u_1 is a neighbor of u_2, u_3, u_4, and u_1'. Paths $u_1'u_2'u_2, u_1'u_3'u_3$, and $u_1'u_4'u_4$ are edge disjoint paths from u_1' to u_2, u_3, and u_4, respectively. Even more, none of the edges on those paths is in H_k. Boundaries of faces F_{23}, F_{34}, and F_{24} without paths $u_2u_1u_3, u_3u_1u_4$, and $u_2u_1u_4$, respectively, complete the desired subdivision.

The proof of the above theorem has structural similarities to the proof of Theorem 3 in [12], however the main difference is that $H_k^1 \cap H_k^2$ need not be connected in the case of partial cubes.

In [7] Imrich and Klavžar introduced two subclasses of partial cubes: almost-median and semi-median graphs. **Almost-median** graphs are graphs in which certain subgraphs are isometric and **semi-median** are graphs for which the same subgraphs are connected. (We do not need the exact definition here.) One motivation for the introduction of these classes of graphs was that almost-median graphs are “clearly” graphs that can be obtained from K_1 by isometric expansions and semi-median graphs can be obtained from K_1 by connected expansions. This is not true as shown in [7, 2]. However both classes have an expansion characterization with some additional condition, see [2]. Thus graphs that can be obtained from K_1 by an isometric (connected) expansion are some other class of partial cubes. For relations between these classes see [3].

If in Theorem 3 we use the above expansions instead of the ordinary expansion, we obtain characterizations of planar almost-median graphs, planar semi-median graphs, planar graphs that can be obtained from K_1 by isometric expansions, and planar graphs that can be obtained from K_1 by connected expansions. Proofs are the same only that we replace the ordinary expansion with the appropriate other expansion.

Acknowledgment The author wish to thanks to Sandi Klavžar and Boštjan Brešar for several comments that have improve the text.
References

